(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(x, k), a) → r1(k, cons(x, a))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
r1(cons(x, k), a) →+ r1(k, cons(x, a))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [k / cons(x, k)].
The result substitution is [a / cons(x, a)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(x, k), a) → r1(k, cons(x, a))
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
cons/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(k), a) → r1(k, cons(a))
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(k), a) → r1(k, cons(a))
Types:
rev :: empty:cons → empty:cons
r1 :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
r1
(10) Obligation:
TRS:
Rules:
rev(
ls) →
r1(
ls,
empty)
r1(
empty,
a) →
ar1(
cons(
k),
a) →
r1(
k,
cons(
a))
Types:
rev :: empty:cons → empty:cons
r1 :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))
The following defined symbols remain to be analysed:
r1
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
r1(
gen_empty:cons2_0(
n4_0),
gen_empty:cons2_0(
b)) →
gen_empty:cons2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
r1(gen_empty:cons2_0(0), gen_empty:cons2_0(b)) →RΩ(1)
gen_empty:cons2_0(b)
Induction Step:
r1(gen_empty:cons2_0(+(n4_0, 1)), gen_empty:cons2_0(b)) →RΩ(1)
r1(gen_empty:cons2_0(n4_0), cons(gen_empty:cons2_0(b))) →IH
gen_empty:cons2_0(+(+(b, 1), c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
rev(
ls) →
r1(
ls,
empty)
r1(
empty,
a) →
ar1(
cons(
k),
a) →
r1(
k,
cons(
a))
Types:
rev :: empty:cons → empty:cons
r1 :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
Lemmas:
r1(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
r1(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
rev(
ls) →
r1(
ls,
empty)
r1(
empty,
a) →
ar1(
cons(
k),
a) →
r1(
k,
cons(
a))
Types:
rev :: empty:cons → empty:cons
r1 :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
Lemmas:
r1(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
r1(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)